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Abstract 

The aim of this paper is to evaluate the influence of the mechanical parameters on the uniaxial, plane strain and biaxial regions of the 

forming limit curve (FLC). The material used in this study is DC04 steel sheet. The experimental data needed for analyzing the variability of 

the mechanical parameters has been obtained from uniaxial tensile tests. The tests have been performed on samples cut at 0
o
, 45

o
 and 90

o
 

with respect of the rolling direction (RD). In this way, the yield stress and the plastic anisotropy coefficient have been determined for each of 

the orientations. The strain hardening exponent as well as the hardening coefficient for samples cut along RD has been also determined. 

Assuming that the mechanical parameters have a Gaussian distribution, an extension of their range to 3Sigma has been applied. In order 

to predict the FLC, a new formulation of the Modified Maximum Force Criterion is used. The influence of the mechanical parameters on the 

FLC is studied using the Taguchi method. By taking into account the variability of these parameters, an L12 orthogonal array is constructed. 

By applying the ANOVA procedure, the influence of each factor on the limit strains in the regions mentioned above is evaluated. A discus-

sion referring to the amount of contributions is also made. Finally, a strategy for the determination of the forming limit band is proposed. 
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Introduction 

The FLC is a graphical representation of the strain states 

that produce the occurrence of a defect on the surface of 

the sheet metals (usually, necking or fracture). The exper-

imental and theoretical research related to FLC’s has been 

encouraged by their quick penetration in the industrial 

applications. The first experimental data referring to the 

FLC’s were published by Keeler and Backofen (1964) and 

Goodwin (1968), respectively. The FLC concept is effi-

cient in practice due to the fact that the limit strains can be 

easily measured. Its use in industry allows the prevention 

of material waste and the reduction of the times and prices 

related to the development of prototypes.  

During the second half of the 20
th

 century, several mod-

els for the calculation of the limit strains have been devel-

oped. The theories proposed by Hill (1952) and Swift 

(1952) are based on the localized and diffuse necking 

hypotheses, respectively. Marciniak and Kuczynsky 

(1967) have proposed a model of strain localization based 

on the assumption that a thickness inhomogeneity exists 

from the very beginning of the forming process. In its 

original formulation, this model can be used only for cal-

culating the tension-tension quadrant of the FLC. In order 

to extend the applicability of the Marciniak-Kuczynsky 

model to the tension-compression quadrant of the FLC, 

Hutchinson and Neale (1978) have developed a more 

general formulation that allows the planar rotation of the 

thickness defect. In 1975, Storen and Rice (1975) pro-

posed the so-called “vertex theory” to model the localized 

necking under biaxial stretching conditions. Later on, 

Dudzinsky and Molinari (1991) proposed “the small per-

turbation theory” as a model of the plastic instability. Hora 

and Tong (1994) also developed the so-called Modified 

Maximum Force Criterion-MMFC with the aim of im-

proving the diffuse necking model previously proposed by 

Swift. Their approach is based on the experimentally con-

firmed fact that the onset of necking significantly depends 

on the strain ratio. Recently, Hora’s model has been im-

proved by Hora and Tong (2006) and Comsa et al. (2010). 

An exhaustive description of the experimental and theoret-

ical research on FLC’s can be found in Banabic (2010a). A 

review of the Marcinik-Kuckzynski model is presented in 

Banabic et al. (2010b) and Banabic (2010c). 

The mechanical parameters of the sheet metals have a 

strong influence on the forming limit curves. The first who 

noticed the variability of the experimentally determined 

FLC’s were van Minh, Sowerby and Duncan (1974). After 

analyzing a large set of experimental results, they con-

cluded that the scattering of the measured forming limits 

was caused by the errors in the experimental method and 

also by the variability of the material properties. The con-

cept of Forming Limit Band (FLB) has been introduced by 

Janssens et al. (2001) on the basis of an experimental 

study referring to the accuracy of the FLC determination. 

By taking into account the variability of the mechanical 

parameters, lower and upper forming limit curves of the 

sheet metals can be drawn. Different approaches have 

been developed in order to predict the FLB. Banabic and 

Vos (2007) have used the Marciniak–Kuczynski model to 

calculate such FLB’s. They determined the lower and 

upper forming limit curves by taking into account the 

variation of the parameters having control on the yield 

locus and the hardening rule of the metallic sheet.  

The main purpose of this work is to analyze the influ-

ence of the mechanical parameters on the uniaxial, plane 

strain and biaxial regions of the forming limit curve. The 

influence of the parameters will be determined by applying 

the ANOVA method. Taguchi´s (1990) fractional factorial 

design of experiments is applied to plan the numerical 

simulations. The simulation plan is defined using an L12 

Taguchi orthogonal array. The influence of the following 

mechanical parameters will be studied: the yield stresses 

and the anisotropy coefficients determined at 0
o
, 45

o
 and 

90
o
 with respect to the rolling direction. The strain harden-

ing exponent of the power hardening law is also included 

in the analysis. At the end of the paper, a strategy for the 

determination of the forming limit band is proposed. 
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Prediction of the Forming Limit Curves 

Throughout this paper, the sheet metal is considered to 

behave as an orthotropic membrane under the plane-stress 

conditions 
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The above relationships involve the stresses and strain-

rates expressed in the plastic orthotropy frame (1, 2 and 3 

are the indices associated to the rolling, transverse, and 

normal directions, respectively). One also assumes that the 

external loads do not produce tangential stresses and 

strains: 

 
12 21 12 210, 0         (2) 

The non-zero stresses and strain-rates thus become princi-

pal values. In order to emphasize their significance, the 

following notations will be used:  1,2,3i ii i    – 

principal strain rates, and  1,2j jj j    – principal 

stresses. 

The mechanical response of the sheet metal will be de-

scribed by a rigid-plastic model. The main ingredient of 

the constitutive model is the yield criterion: 

    1 2, Y     (3) 

where  1 2, 0      is the equivalent stress (homo-

geneous function of the first degree), 0   is the equiva-

lent strain, and   0t t tY Y    is the yield parameter 

controlled by a strictly increasing hardening law. The 

principal strain-rates are defined by the flow rule 
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and the incompressibility constraint 

 1 2 3 0       (5) 

In order to preserve the simplicity of the model, one as-

sumes that the local state of the sheet metal evolves along 

linear load paths subjected to the constraint 

 2 1 1 1 2const., 0,           (6) 

For any load state having the property given by Equation 

(6), the equivalent stress and its partial derivatives with 

respect to the non-zero principal stresses could be ex-

pressed as follows: 
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The functions f , ,g  and h are only related to the particu-

lar formulation of the equivalent stress adopted in the 

model. In this paper, the mechanical behavior of the sheet 

metal is described using the BBC2005 yield criterion (see 

Banabic 2010) yield criterion. 

Equation (7) allows rewriting the yield criterion and the 

flow rule as follows (see Equations (3) and (4)): 

    1 ,Y f     (8) 

    1 2,g h         (9) 

One may prove that, under the constraint given by Equa-

tion (6), the strain path is also linear. As a consequence, 

Equation (9) can be easily integrated with respect to the 

time variable: 

    1 2,g h         (10) 

The FLC model used in this paper is a modification of 

Hora’s model (1994) (Fig. 1).  

 

 
 

Figure 1. Evolution of the material towards the plane 

strain before the necking stage 

 

According to Comsa et al. (2010), the necking occurs 

when the following equality is fulfilled: 
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In the relationship written above,  1,    is a measure of 

the “distance” separating the current state of the material 

from the plane-strain. The scalar quantity  1,    is 

defined by integrating the elementary arc-length of the 

normalized yield locus: 
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On the basis of the experimental evidence showing that 

the strain localization is preceded by the evolution of the 

material towards the plane-strain, the “distance” parameter    

is defined in the following manner: 
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After some mathematical manipulations, Equation (11) can 

be rewritten in the form 
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This relationship allows the calculation of the equivalent 

strain associated to necking:  
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As soon as   is known, the corresponding principal 

strains result from Equation (10). 

In order to build a reliable and robust FLB model, the 

influence of the constitutive equations on the limit strains 

should be analyzed. One possible approach consists in 

running the simulations by varying each mechanical pa-

rameter used in the identification procedures of the equiva-

lent stress and hardening rule. If the equivalent stress has a 

complicated formulation, such a strategy becomes inade-

quate because the influence of each parameter on the yield 

locus cannot be intuitively deduced. With the aim of over-

coming this difficulty, the authors have developed an al-

ternative approach. One may notice that the lower level of 

the forming limit curve generally corresponds to the min-

imum values of the equivalent plastic strains defined by 

Equation (15). These minima are achieved when the fol-

lowing expression reaches its minimum value: 

  

  (16) 

 

 

i.e. when the hardening exponent n and the second term 

have the lowest values. The upper level of the forming 

limit curve corresponds to the opposite case, when both 

the first and second term in Equation (16) has maximum 

values. 

Experimental Framework 

The sheet metal used in the experiments is DC04 carbon 

steel with 0.85mm thickness. 

Janssens et al. (2001) specify that a confidence level of 

99.5% for Gauss normal distribution can be attained by 

performing at least 30 tests for each direction in the plane 

of the sheet metal. By using this assumption, in order to 

determine the variability of the mechanical parameters, 42 

tensile tests have been performed using samples cut at 0
o
 

with respect to the rolling direction. Additionally, 33 ten-

sile tests have been made using samples cut at 45
o
 with 

respect to the rolling direction and 38 tensile tests using 

samples cut along the transverse direction. 

The mechanical parameters used in this study are the 

yield stresses and the anisotropy coefficients, as well as 

the n coefficient of the power hardening law (Hollomon). 

The following statistical parameters have been calculated 

for these quantities: mean value of the noise variables that 

describes the central location of the data, and the standard 

deviation that shows the variation or "dispersion" of the 

experimental data from the mean value. 

Table 1 shows the characteristic values of the mechani-

cal parameters obtained from experiments, together with 

their minimum and maximum values. The statistical coef-

ficients mentioned above have been calculated for each 

parameter. 

 

Table 1. Mechanical parameters of the DC04 steel sheet 

(0.85 mm thickness). 

Material 

parameter 

Minimum 

value 

Maximum 

value 

Mean 

value 

Standard 

deviation 

Y0[MPa] 190.56 198.98 195.96 2.086 

r0 1.72 2.20 1.92 0.110 

Y45[MPa] 207.06 215.35 210.97 2.401 

r45 1.17 1.44 1.31 0.062 

Y90[MPa] 201.75 209.79 205.49 2.154 

r90 2.00 2.65 2.22 0.145 

n0 0.20 0.21 0.21 0.002 

K0[MPa] 519.40 531.88 526.97 3.800 

Taguchi method 

The variability of the mechanical parameters is assumed 

to obey the Gauss normal distribution. Using this assump-

tion, two levels of the parameters can be established (see 

Table 2). The first level is calculated by subtracting 

3Sigma from the mean value, while the second level re-

sults by adding 3Sigma to the mean value. 

 

 

Table 2. Mechanical parameters and their reference levels. 

Mechanical 

parameters 
Level 1 Level 2 

n 0.2037 0.216 

Y0[MPa] 189.7 202.22 

r0 1.59 2.25 

Y45[MPa] 203.77 218.18 

r45 1.13 1.51 

Y90[MPa] 199.03 211.96 

r90 1.78 2.66 

 

Table 3. . L12 orthogonal array and the model response 

for three regions of limit strains (BT – biaxial traction, PS 

– plane strain, UT – uniaxial traction). 

Nr. n Y0 R0 Y45 R45 Y90 R90 BT PS UT 

1 1 1 1 1 1 1 1 0.352 0.195 0.837 

2 1 1 1 1 1 2 2 0.342 0.195 0.888 

3 1 1 2 2 2 1 1 0.346 0.195 0.999 

4 1 2 1 2 2 1 2 0.352 0.195 0.899 

5 1 2 2 1 2 2 1 0.346 0.195 0.999 

6 1 2 2 2 1 2 2 0.347 0.195 1.050 

7 2 1 2 2 1 1 2 0.359 0.208 1.062 

8 2 1 2 1 2 2 2 0.347 0.208 1.059 

9 2 1 1 2 2 2 1 0.354 0.208 0.868 

10 2 2 2 1 1 1 1 0.372 0.207 0.982 

11 2 2 1 2 1 2 1 0.364 0.207 0.849 

12 2 2 1 1 2 1 2 0.364 0.207 0.912 
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In order to optimize the number of numerical simulations, 

Taguchi’s method (1990) has been adopted. This method uses an 

orthogonal array with combinations of possible conditions. In 

this study, an L12 orthogonal array has been chosen in order to 

establish the input of the numerical simulations. The objective of 

the computations evaluate the influence of the mechanical pa-

rameters on the uniaxial, plane strain and biaxial regions of the 

forming limit curve predicted by the MMFC criterion. The calcu-

lated values of the limit strains determined for each set of input 

data are listed in Table 3. 

Influence of the mechanical parameters on the 

computed FLC’s 

The influence of each mechanical parameter on the FLC has 

been studied by using the analysis of the variance (ANOVA). 

Three regions of the FLC have been taken into account: biaxial 

traction (BT), plane strain (PS) and uniaxial traction (UT). The 

importance degree of each parameter is presented in Table 4. 

 

Table 4. Percent contributions of each mechanical parameters on 

the limit strains corresponding to the biaxial, plane strain and 

uniaxial regions of the FLC 

Material 

parameter 
BT% PS% UT% 

n0 50.85 99.8975 0.2954 

Y0 18.91 0.03082 -0.0184 

r0 1.02 0.0347 86.273 

Y45 -0.12 -0.00010 0.201 

r45 6.413 0.003 0.432 

Y90 18.058 0.028 -0.025 

r90 3.4856 0.0027 12.000 

Error -other 
parameters 

1.369 0.0019 0.841 

 

As one may notice, the hardening exponent has the strongest 

influence (about 50%.) in the biaxial region. The yield stresses 

corresponding to the rolling and transverse directions have a 

small influence (about 18%). 

As expected, at the level of the plane strain region, the harden-

ing exponent also has the strongest influence (more than 99%).  

In the case of the tension-compression quadrant, the coeffi-

cients of plastic anisotropy r0 and r90 have the most important 

effect on the limit strains: (about 86% and 12%, respectively). 

Fig. 2 shows the influence of mechanical parameters on 

the yield locus predicted by the BBC2005 yield criterion. 

The scattering that can be noticed in the biaxial region (see 

the detail) is a consequence of the fact that the identifica-

tion procedure used only uniaxial material data. 

Fig. 3 shows the forming limit curves obtained by vary-

ing the mechanical parameters according to the Taguchi 

technique. In the plane strain region, the curves are 

grouped by the reference levels of the hardening exponent 

n. The scattering is more visible in the uniaxial and biaxial 

regions (see the detailed views at the top of Fig. 3.) 

Conclusion 

This paper illustrates the use of the MMFC model in 

connection with the Taguchi and ANOVA methods for 

analyzing the influence of seven material parameters on 

the forming limit curves. The mean values and the refer-

ence levels of the mechanical parameters have been de-

termined from the results of uniaxial tensile tests per-

formed at 0
o
, 45

o
 and 90

o
 with respect to the rolling direc-

tion. 
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Figure 2 Yield loci obtained by varying the mechanical parameters according to the Taguchi technique 
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Figure 3 Forming limit curves obtained by varying the mechanical parameters according to the Taguchi technique 

 

 

The influence of the mechanical parameters in three re-

gions of the forming limit curve has been studied. The 

analysis shows that the hardening exponent has the strong-

est influence both in the biaxial and the plane strain re-

gions. As concerns the left branch of the forming limit 

curve, the coefficients of plastic anisotropy r0 and r90 are of 

greater importance.  
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